267 research outputs found

    Strike-slip reactivation of a Paleogene to Miocene fold and thrust belt along the central part of the Mid-Hungarian Shear Zone

    Get PDF
    Recently shot 3D seismic data allowed for a detailed interpretation, aimed at the tectonic evolution of the central part of the Mid-Hungarian Shear Zone (MHZ). The MHZ acted as a NW vergent fold and thrust belt in the Late Oligocene. The intensity of shortening increased westwards, causing clockwise rotation of the western regions, relatively to the mildly deformed eastern areas. Blind thrusting and related folding in the MHZ continued in the Early Miocene. Thrusting and gentle folding in the MHZ partly continued in the earliest Pannonian, and was followed by sinistral movements in the whole MHZ, with maximal displacement along the Toalmas zone. Late Pannonian inversion activated thrusts and generated transpressional movements along the Toalmas zone

    Emergence of bound states in ballistic magnetotransport of graphene antidots

    Get PDF
    An experimental method for detection of bound states around an antidot formed from a hole in a graphene sheet is proposed by measuring the ballistic two terminal conductances. In particularly, we consider the effect of bound states formed by magnetic field on the two terminal conductance and show that one can observe Breit-Wigner like resonances in the conductance as a function of the Fermi level close to the energies of the bound states. In addition, we develop a new numerical method in which the computational effort is proportional to the linear dimensions, instead of the area of the scattering region beeing typical for the existing numerical recursive Green's function method.Comment: 7 pages, 6 figure

    Origins of conductance anomalies in a p-type GaAs quantum point contact

    Get PDF
    Low temperature transport measurements on a p-GaAs quantum point contact are presented which reveal the presence of a conductance anomaly that is markedly different from the conventional `0.7 anomaly'. A lateral shift by asymmetric gating of the conducting channel is utilized to identify and separate different conductance anomalies of local and generic origins experimentally. While the more generic 0.7 anomaly is not directly affected by changing the gate configuration, a model is proposed which attributes the additional conductance features to a gate-dependent coupling of the propagating states to localized states emerging due to a nearby potential imperfection. Finite bias conductivity measurements reveal the interplay between the two anomalies consistently with a two-impurity Kondo model

    Large variations in the hole spin splitting of quantum-wire subband edges

    Full text link
    We study Zeeman splitting of zone-center subband edges in a cylindrical hole wire subject to a magnetic field parallel to its axis. The g-factor turns out to fluctuate strongly as a function of wire-subband index, assuming values that differ substantially from those found in higher-dimensional systems. We analyze the spin properties of hole-wire states using invariants of the spin-3/2 density matrix and find a strong correlation between g-factor value and the profile of hole-spin polarization density. Our results suggest possibilities for confinement engineering of hole spin splittings.Comment: 4 pages, 3 figures, RevTex4, to appear in PR

    Strong spin relaxation length dependence on electric field gradients

    Full text link
    We discuss the influence of electrical effects on spin transport, and in particular the propagation and relaxation of spin polarized electrons in the presence of inhomogeneous electric fields. We show that the spin relaxation length strongly depends on electric field gradients, and that significant suppression of electron spin polarization can occur as a result thereof. A discussion in terms of a drift-diffusion picture, and self-consistent numerical calculations based on a Boltzmann-Poisson approach shows that the spin relaxation length in fact can be of the order of the charge screening length.Comment: 4 pages, 3 figures, to be presented at PASPSI

    Anomalous Hall effect in (In,Mn)Sb dilute magnetic semiconductor

    Full text link
    High magnetic field study of Hall resistivity in the ferromagnetic phase of (In,Mn)Sb allows one to separate its normal and anomalous components. We show that the anomalous Hall term is not proportional to the magnetization, and that it even changes sign as a function of magnetic field. We also show that the application of pressure modifies the scattering process, but does not influence the Hall effect. These observations suggest that the anomalous Hall effect in (In,Mn)Sb is an intrinsic property and support the application of the Berry phase theory for (III,Mn)V semiconductors. We propose a phenomenological description of the anomalous Hall conductivity, based on a field-dependent relative shift of the heavy- and light-hole valence bands and the split-off band

    Magnetic and Transport Properties of Fe-Ag granular multilayers

    Full text link
    Results of magnetization, magnetotransport and Mossbauer spectroscopy measurements of sequentially evaporated Fe-Ag granular composites are presented. The strong magnetic scattering of the conduction electrons is reflected in the sublinear temperature dependence of the resistance and in the large negative magnetoresistance. The simultaneous analysis of the magnetic properties and the transport behavior suggests a bimodal grain size distribution. A detailed quantitative description of the unusual features observed in the transport properties is given
    • …
    corecore